620 research outputs found

    Optimum Detection Location-Based Cooperative Spectrum Sensing in Cognitive Radio

    Get PDF
    Cognitive radio arises as a hot research issue in wireless communications recently, attributed to its capability of enhancing spectral efficiency and catering for the growing demand for bandwidth. As a good embodiment of cognitive radio’s unique feature, i.e. making use of every bit spectral resource, spectrum sensing plays a vital role in the implementation of cognitive radio. To alleviate negative effect on cooperative spectrum sensing brought by bit errors, we introduce a novel concept, i.e. Optimum Detection Location (ODL) and present two algorithms of different computational complexity for locating ODL, together with an ODL-Based cooperative spectrum sensing scheme, with the motivation to exploit the gain derived from geographic advantages and multiuser diversity. Numerical and simulation results both demonstrate that our proposed spectrum sensing scheme can significantly improve the sensing performance in the case of reporting channel with bit errors

    QoS management and control for an all-IP WiMAX network architecture: Design, implementation and evaluation

    Get PDF
    The IEEE 802.16 standard provides a specification for a fixed and mobile broadband wireless access system, offering high data rate transmission of multimedia services with different Quality-of-Service (QoS) requirements through the air interface. The WiMAX Forum, going beyond the air interface, defined an end-to-end WiMAX network architecture, based on an all-IP platform in order to complete the standards required for a commercial rollout of WiMAX as broadband wireless access solution. As the WiMAX network architecture is only a functional specification, this paper focuses on an innovative solution for an end-to-end WiMAX network architecture offering in compliance with the WiMAX Forum specification. To our best knowledge, this is the first WiMAX architecture built by a research consortium globally and was performed within the framework of the European IST project WEIRD (WiMAX Extension to Isolated Research Data networks). One of the principal features of our architecture is support for end-to-end QoS achieved by the integration of resource control in the WiMAX wireless link and the resource management in the wired domains in the network core. In this paper we present the architectural design of these QoS features in the overall WiMAX all-IP framework and their functional as well as performance evaluation. The presented results can safely be considered as unique and timely for any WiMAX system integrator

    Degradative Tubular Lysosomes Link Pexophagy To Starvation And Early Aging In C. Elegans

    Get PDF
    Organelle-specific autophagy directs degradation of eukaryotic organelles under certain conditions. Like other organelles, peroxisomes are subject to autophagic turnover at lysosomes. However, peroxisome autophagy (pexophagy) has yet to be analyzed in a live-animal system, limiting knowledge on its regulation during an animal\u27s life. Here, we generated a tandem-fluorophore reporter that enabled real-time tracking of pexophagy in live Caenorhabditis elegans. We observed that pexophagy occurred at a population of non-canonical, tubular lysosomes specifically during starvation and aging. Remarkably, in these contexts, tubular lysosomes were the predominant type of lysosome in the intestine, transforming from vesicles. Though we found that peroxisomes were largely eliminated in early adulthood, they appeared restored in new generations. We identified peroxisomal genes that regulated age-dependent peroxisome loss and demonstrated that modifying this process altered animal lifespan. These findings reveal new facets of peroxisome homeostasis relevant to aging and challenge the prevailing perception of lysosome homogeneity in autophagy

    Applications of Two-Body Dirac Equations to the Meson Spectrum with Three versus Two Covariant Interactions, SU(3) Mixing, and Comparison to a Quasipotential Approach

    Full text link
    In a previous paper Crater and Van Alstine applied the Two Body Dirac equations of constraint dynamics to the meson quark-antiquark bound states using a relativistic extention of the Adler-Piran potential and compared their spectral results to those from other approaches, ones which also considered meson spectroscopy as a whole and not in parts. In this paper we explore in more detail the differences and similarities in an important subset of those approaches, the quasipotential approach. In the earlier paper, the transformation properties of the quark-antiquark potentials were limited to a scalar and an electromagnetic-like four vector, with the former accounting for the confining aspects of the overall potential, and the latter the short range portion. A part of that work consisted of developing a way in which the static Adler-Piran potential was apportioned between those two different types of potentials in addition to covariantization. Here we make a change in this apportionment that leads to a substantial improvement in the resultant spectroscopy by including a time-like confining vector potential over and above the scalar confining one and the electromagnetic-like vector potential. Our fit includes 19 more mesons than the earlier results and we modify the scalar portion of the potential in such a way that allows this formalism to account for the isoscalar mesons {\eta} and {\eta}' not included in the previous work. Continuing the comparisons made in the previous paper with other approaches to meson spectroscopy we examine in this paper the quasipotential approach of Ebert, Faustov, and Galkin for a comparison with our formalism and spectral results.Comment: Revisions of earlier versio

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats

    Digital image analysis of fingernail colour in cadavers comparing carbon monoxide poisoning to controls

    Get PDF
    The original publication is available at www.springerlink.comCarbon monoxide is a component of motor vehicle exhaust fumes, provided a functional catalytic converter is not present. This gas binds avidly to the hemoglobin molecule in red blood cells preventing its oxygen transport function, effectively poisoning the body by starving it of oxygen. In binding to hemoglobin, carbon monoxide forms carboxyhemoglobin, which has a characteristic bright pink color. It has been remarked that the fingernails of victims of carbon monoxide tend to exhibit pink color, otherwise fingernails of deceased bodies tend towards a dark red to blue color. This study sought to objectively determine by using digital image analysis if a color difference occurred between the fingernails of a group of cadavers with carbon monoxide poisoning compared to a group of controls. The fingernails of the carbon monoxide group did tend to be more red than the controls, but due to overlap between the two groups assessment of the fingernails cannot be recommended as a rapid screening test.Neil E. I. Langloi

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (ιpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    How the blood pool properties at onset affect the temporal behavior of simulated bruises

    Get PDF
    The influence of initial blood pool properties on the temporal behavior of bruises is currently unknown. We addressed this important issue by utilizing three typical classes of bruises in our three-layered finite compartment model. We simulated the effects of their initial shapes, regularity of boundaries and initial blood concentration distributions (gaussian vs. homogeneous) on the hemoglobin and bilirubin areas in the dermal top layer. Age determination of bruises with gaussian hemoglobin concentration was also addressed. We found that the initial blood pool properties strongly affect bruise behavior. We determined the age of a 200-h simulated bruise with gaussian hemoglobin concentration with 3 h uncertainty. In conclusion, bruise behavior depends non-intuitively on the initial blood pool properties; hence, a model that includes shape, area and concentration distribution at onset is indispensable. Future age determination, including inhomogeneous hemoglobin distributions, will likely be based on the presented method for gaussian distributions
    • 

    corecore